
Penetration Test Report

Relaycorp, Inc.

V 1.0
Amsterdam, April 25th, 2025
Public

Document Properties

Client Relaycorp, Inc.

Title Penetration Test Report

Targets • VeraID protocol

• VeraID cloud native app/API

• VeraID client libraries

Version 1.0

Pentesters Sipke Mellema, Andrea Jegher

Authors Sipke Mellema, Andrea Jegher, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 April 10th, 2025 Sipke Mellema, Andrea
Jegher

Initial draft

0.2 April 23rd, 2025 Marcus Bointon Review

1.0 April 25th, 2025 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of Work 4

1.3 Project Objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 5

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 7

1.6.2 Findings by Type 7

1.7 Summary of Recommendations 8

2 Methodology 9
2.1 Planning 9

2.2 Risk Classification 9

3 Reconnaissance and Fingerprinting 11

4 Findings 12
4.1 CLN-005 — Insecure direct object reference 12

4.2 CLN-006 — NoSQL injection pattern 13

4.3 CLN-007 — Inconsistent URL filtering 15

4.4 CLN-008 — Stack overflow denial-of-service vulnerability in NodeJS implementation 16

4.5 CLN-011 — Use of outdated packages 17

4.6 CLN-010 — Parser differences 18

5 Non-Findings 20
5.1 NF-004 — GitHub run shell injection 20

5.2 NF-009 — JWT verification doesn't require Issued At claim 21

5.3 NF-012 — Protocol considerations 21

5.4 NF-013 — Signature bundle verification fuzzing 21

6 Future Work 23

7 Conclusion 24

Appendix 1 Testing Team 25

1 Executive Summary

1.1 Introduction

Between March 27, 2025 and April 11, 2025, Radically Open Security B.V. carried out a penetration test for Relaycorp,

Inc.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of Work

The scope of the penetration test was limited to the following targets:

• VeraID protocol

• VeraID cloud native app/API

• VeraID client libraries

The scoped services are broken down as follows:

• Penetration testing of VeraID Cloud Native App/API: 3 days

• Code Review / Testing of VeraID Client Libs semantics: 4 days

• Code Review / Testing of DNSSEC semantics: 2 days

• Reporting: 2 days

• Total effort: 11 days

1.3 Project Objectives

ROS will perform a penetration test of the VeraId protocol with Relaycorp in order to assess the security of the protocol

and its implementation. To do so ROS will access the VeraId open source repositories and guide Relaycorp in attempting

to find vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between March 27, 2025 and April 11, 2025.

4 Radically Open Security B.V.

https://github.com/orgs/relaycorp/repositories

Public

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Elevated, 4 Low and 1 N/A-severity issues.

The most impactful issue was found in the VeraId Authority server. Secret tokens used to import public keys are partially

predictable CLN-005 (page 12). This predictability could allow an attacker to add public keys to other users’ keys.

The project uses outdated packages with dependencies that include known vulnerabilities CLN-011 (page 17). While

these vulnerabilities are not easily exploitable, they still pose a moderate risk and should be addressed in future updates.

A Denial of Service (DoS) vulnerability exists in the NodeJS implementation CLN-008 (page 16). By manipulating the

signature bundle, an attacker could crash the application, potentially disrupting availability.

The system VeraId Authority server URL validation only on the first of two requests made when validating a JWT token

during a signature spec request. This inconsistent filtering could allow malicious content to bypass security controls

CLN-007 (page 15).

We identified a NoSQL injection pattern in the VeraId Authority server CLN-006 (page 13). This pattern could be

exploited to bypass authorization mechanisms, putting sensitive data at risk.

We found multiple inconsistencies in how the Java and NodeJs implementations parse data CLN-010 (page 18).

These variations can lead to unpredictable behavior and potential security weaknesses if not carefully managed.

The JWT verification process does not enforce the Issued At claim, but this was not considered a vulnerability, as it

aligns with accepted practices in certain contexts non-finding NF-009 (page 21).

We reviewed the GitHub workflow scripts for shell injection vulnerabilities through developer-supplied inputs, but did not

find any exploitable patterns.

The report includes an issue regarding protocol-level security decisions too, which were not explicitly detailed in this

summary but are worth deeper review non-finding NF-012 (page 21).

1.6 Summary of Findings

Info Description

CLN-005
Elevated
Type: CWE-639:
Authorization Bypass
Through User-Controlled
Key
Status: none

The secret tokens that are generated to import public keys via the Awala service are

partially predictable, which could allow an attacker to manipulate keys belonging to

others.

Executive Summary 5

CLN-006
Low
Type: CWE-943: Improper
Neutralization of Special
Elements in Data Query
Logic
Status: none

The veraid-authority application uses a coding pattern that allows NoSQL injection, which

can result in an authorization bypass.

CLN-007
Low
Type: Server-Side
Request Forgery
Status: none

Members can create a signature bundle on the Authority server. They can provide a URL

to a custom identity server. Two requests are made when the bundle is retrieved, but only

the initial URL is validated.

CLN-008
Low
Type: Denial of Service
Status: none

The NodeJS implementation is vulnerable to denial of service; an attacker can

manipulate the signature bundle to crash the application.

CLN-011
Low
Type: Vulnerable and
Outdated Components
Status: none

The VeraID packages contain outdated dependencies with known vulnerabilities that are

not easily exploited.

CLN-010
N/A
Type: Inconsistent Parsing
Status: none

There are multiple differences between the parser implementations for NodeJS and

Kotlin.

6 Radically Open Security B.V.

Public

1.6.1 Findings by Threat Level

16.7%

66.7%

16.7%

Elevated (1)

Low (4)

N/A (1)

1.6.2 Findings by Type

16.7%

16.7%

16.7% 16.7%

16.7%

16.7%

CWE-639: Authorization Bypass Through

User-Controlled Key (1)

CWE-943: Improper Neutralization of

Special Elements in Data Query Logic (1)

Server-Side Request Forgery (1)

Denial of Service (1)

Vulnerable and Outdated Components (1)

Inconsistent Parsing (1)

Executive Summary 7

1.7 Summary of Recommendations

Info Recommendation

CLN-005
Elevated
Type: CWE-639:
Authorization Bypass
Through User-Controlled
Key
Status: none

• Use cryptographically random tokens like a UUIDv4 or v7 for security-sensitive
operations.

CLN-006
Low
Type: CWE-943: Improper
Neutralization of Special
Elements in Data Query
Logic
Status: none

• Force the email address to be a string with the toString function.

CLN-007
Low
Type: Server-Side
Request Forgery
Status: none

• Perform the same level of URL validation on both URLs (providerIssuerUrl
and jwks_uri).

CLN-008
Low
Type: Denial of Service
Status: none

• Improve the way that the zones are parsed to prevent the application entering an
infinite loop.

CLN-011
Low
Type: Vulnerable and
Outdated Components
Status: none

• Update the packages to their latest version on a regular basis.

CLN-010
N/A
Type: Inconsistent Parsing
Status: none

• Consider adding more details about parsing to the standard if the mentioned
parsing differences are of security concern to future development.

8 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 9

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

10 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Gitleaks – https://github.com/gitleaks/gitleaks

• CodeQL – https://codeql.github.com

• OpenGrep – https://github.com/opengrep/opengrep

Reconnaissance and Fingerprinting 11

https://github.com/gitleaks/gitleaks
https://codeql.github.com
https://github.com/opengrep/opengrep

4 Findings

We have identified the following issues:

4.1 CLN-005 — Insecure direct object reference

Vulnerability ID: CLN-005

Vulnerability type: CWE-639: Authorization Bypass Through User-Controlled
Key

Threat level: Elevated

Description:

The secret tokens that are generated to import public keys via the Awala service are partially predictable, which could

allow an attacker to manipulate keys belonging to others.

Technical description:

The veraid-authority application allows administrators to manage organizations and members. Members can also use

the server to perform actions like set their public key.

Veraid-authority uses MongoDB IDs as object identifiers. This is used for members and public keys, but they are

also used as secret tokens for changing a member's public key via the Awala endpoint publicKeyImportToken.

MongoDB IDs are not cryptographically random; they are partially predictable. From the documentation:

ObjectIds are small, likely unique, fast to generate, and ordered. ObjectId values are 12 bytes in length, consisting of:

A 4-byte timestamp, representing the ObjectId's creation, measured in seconds since the Unix epoch. A 5-byte random

value generated once per process. This random value is unique to the machine and process. A 3-byte incrementing

counter, initialized to a random value.

Depending on the attacker's resources and the application deployment these IDs might not be secure. For example, if

the MongoDB has only one process, the 5-byte random value is always the same. This leaves 4-7 bytes left to brute-

force, which is feasible, even for an online attack.

The image below shows an attacker importing a public key for a user with a predictable import token via the Awala

endpoint.

12 Radically Open Security B.V.

https://www.mongodb.com/docs/manual/reference/bson-types/#std-label-objectid

Public

Impact:

An attacker with enough resources might be able to guess the identifier and set the public key for another user. This in

itself has limited impact, because the attacker would need to also obtain the member bundle in order to spoof others.

The ability to use the Awala endpoint also depends on the way the server is deployed.

Recommendation:

• Use cryptographically random tokens like a UUIDv4 or v7 for security-sensitive operations.

4.2 CLN-006 — NoSQL injection pattern

Vulnerability ID: CLN-006

Vulnerability type: CWE-943: Improper Neutralization of Special Elements in
Data Query Logic

Threat level: Low

Description:

The veraid-authority application uses a coding pattern that allows NoSQL injection, which can result in an authorization

bypass.

Findings 13

Technical description:

In orgAuthPlugin.ts, the organization name and the user's email are used to find a member with the findOne

function.

async function decideAuthorisation(
[..]
 const member = await memberModel.findOne({ orgName, email: userEmail }).select(['role']);

MemberModel is a Mongoose model that prevents NoSQL injection by default. The snippet from the member model

below shows that the orgName is a string, so Mongoose will convert it to a string during conversion. However, the

email field allows arbitrary types. If an attacker can change the value of userEmail to {"$ne":"test"}, the query

will search for all emails that are not equal to "test", instead of searching for the literal value; this will match any email

address.

export class Member {
 @prop({ default: null, allowMixed: Severity.ALLOW })
 public name!: string | null;

 @prop({ default: null, allowMixed: Severity.ALLOW })
 public email!: string | null;
[..]
 @prop({ required: true })
 public orgName!: string;
}

However, in this case the email is taken from the JWT token, so a user would need to manipulate the token in order to

perform the attack.

Impact:

Veraid-authority uses a vulnerable coding pattern that is currently not directly exploitable. If the pattern is repeated in

future development it might allow attackers to manipulate NoSQL queries to change the application's behavior.

This example would require an attacker to find a bug in the identity server such that the email can be manipulated to any

value. This level of access can be used to pose as any user, so the injection attack would only be useful to the attacker if

they don't know any email addresses.

Recommendation:

• Force the email address to be a string with the toString function.

14 Radically Open Security B.V.

Public

4.3 CLN-007 — Inconsistent URL filtering

Vulnerability ID: CLN-007

Vulnerability type: Server-Side Request Forgery

Threat level: Low

Description:

Members can create a signature bundle on the Authority server. They can provide a URL to a custom identity server.

Two requests are made when the bundle is retrieved, but only the initial URL is validated.

Technical description:

A user provides a providerIssuerUrl in the signatureSpec endpoint. When a bundle is downloaded, the jwks

configuration is retrieved from that URL. From that response, the server takes the jwks_uri and uses it to make a

second request. Only the first providerIssuerUrl is validated.

In jwksRetrieval.ts, sanitiseJwksUri uses the URL class to sanitize the URL, but this can still be any URL.

The request to jwks_uri seems to be done with undici. This client doesn't support many URL types, only data:

and blob:. A scheme like file: returns the error "Error: not implemented... yet...", as can be read

in the source code here: https://github.com/nodejs/undici/blob/9dd11b8c61c95efd5459f375a196a117184230fa/lib/web/

fetch/index.js#.

Impact:

The URL is inconsistently filtered. An attacking member can use a custom identity server to manipulate the second URL.

This currently has limited impact, but a future HTTP client might allow more advanced URL schemes like file to try and

read files from the local filesystem.

Recommendation:

• Perform the same level of URL validation on both URLs (providerIssuerUrl and jwks_uri).

Findings 15

https://github.com/nodejs/undici/blob/9dd11b8c61c95efd5459f375a196a117184230fa/lib/web/fetch/index.js#
https://github.com/nodejs/undici/blob/9dd11b8c61c95efd5459f375a196a117184230fa/lib/web/fetch/index.js#

4.4 CLN-008 — Stack overflow denial-of-service vulnerability in NodeJS
implementation

Vulnerability ID: CLN-008

Vulnerability type: Denial of Service

Threat level: Low

Description:

The NodeJS implementation is vulnerable to denial of service; an attacker can manipulate the signature bundle to crash

the application.

Technical description:

The DNS zone-parsing logic in name.ts will get stuck in an endless loop with input like .butsers.nl. or

_veraid.butsers.nl... This causes a stack overflow, so the application crashes.

/dnssec-js/src/lib/utils/dns/name.ts:

export function getZonesInName(zoneName: string, shouldIncludeRoot = true): readonly string[] {
 if (zoneName === '') {
 return shouldIncludeRoot ? ['.'] : [];
 }
 const parentZoneName = zoneName.replace(/^[^.]+\./u, '');
 const parentZones = getZonesInName(parentZoneName, shouldIncludeRoot);
 return [...parentZones, zoneName];
}

Impact:

An attacker can make the bundle validation logic crash by providing a malicious CN. If VeraID validation is implemented

server-side, this could be used to crash that service. Also note that the DNS zones need to be traversed before signature

checking can take place, so manipulation can't be detected before the crash.

Recommendation:

• Improve the way that the zones are parsed to prevent the application entering an infinite loop.

16 Radically Open Security B.V.

Public

4.5 CLN-011 — Use of outdated packages

Vulnerability ID: CLN-011

Vulnerability type: Vulnerable and Outdated Components

Threat level: Low

Description:

The VeraID packages contain outdated dependencies with known vulnerabilities that are not easily exploited.

Technical description:

The partial output below shows dangerous vulnerabilities in dependencies used by the Authority server. These could

allow bypasses in JWT-validation and command injection in certain advanced attack scenarios (which would require

secondary vulnerabilities).

fast-jwt <5.0.6
Severity: moderate
Fast-JWT Improperly Validates iss Claims - https://github.com/advisories/GHSA-gm45-q3v2-6cf8
[..]

protobufjs 7.0.0 - 7.2.4
Severity: critical
protobufjs Prototype Pollution vulnerability - https://github.com/advisories/GHSA-h755-8qp9-cq85

Impact:

The Authority server and other VeraID applications use outdated packages with known vulnerabilities. The issues are

currently not directly exploitable, but over time new issues might stack up, and once a vulnerability is found, the others

will make exploitation easier.

Recommendation:

• Update the packages to their latest version on a regular basis. During the pentest, the VeraID developers were

aware of the issues and were already busy with a patch-management plan before the pentest started.

Findings 17

4.6 CLN-010 — Parser differences

Vulnerability ID: CLN-010

Vulnerability type: Inconsistent Parsing

Threat level: N/A

Description:

There are multiple differences between the parser implementations for NodeJS and Kotlin.

Technical description:

The CMS structure

Unsigned attributes can be included in the signerinfo structure (initSignerInfo) without throwing exceptions in

the JS implementation. The BouncyCastle library for Kotlin throws an exception on this.

DNS chain filtering

Adding multiple answers in the final DNS response is ignored by Node, because it only looks at the CN from the org

certificate. Kotlin throws an exception because the DNSSEC chain is insecure. An example is shown in the screenshot

below (the answers for the other domain are filtered out after the rrset step below it).

18 Radically Open Security B.V.

Public

Changing a DNS record type to 0 will make Node throw an exception because one of the responses is malformed

(because it doesn't understand type 0), but the Kotlin implementation will say "DNSSEC verification failed: Unsigned

response was proved to be validly INSECURE".

The organisation certificate

A member can manipulate the organisation certificate, like the extensions and other attributes, because only the public

key and the subject are used (which can't be manipulated).

A member can add a CN to the organisation certificate. Adding the code below to Certificate.js will cause the

Node implementation to throw an exception. The Kotlin implementation validation will pass, because it uses the first CN

from a certificate.

pkijsCert.subject.typesAndValues.push(new AttributeTypeAndValue({
 type: COMMON_NAME,
 value: new BmpString({ value: options.commonName }),
}));
pkijsCert.subject.typesAndValues.push(new AttributeTypeAndValue({
 type: COMMON_NAME,
 value: new BmpString({ value: "www.ros.win" }),
}));

Impact:

These parsing differences have no security impact at the moment. They are mentioned as interesting cases that might

be of concern to future development (like how the organisation certificate can be manipulated).

Recommendation:

• Consider adding more details about parsing to the standard if the mentioned parsing differences are of security

concern to future development.

Findings 19

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-004 — GitHub run shell injection

The project shares GitHub Workflows in the repo called shared-workflows. Four workflows in this repo use

developer inputs in the run step. These developer inputs are defined in the inputs field of a workflow trigger, in this

case workflow_call.

1. shared-workflows/.github/workflows/nodejs-compose-ci.yml line 60

2. shared-workflows/.github/workflows/nodejs-knative-ci.yml line 164

3. shared-workflows/.github/workflows/nodejs-server-ci.yml line 110

4. shared-workflows/.github/workflows/tfmodule-ci.yml line 41

For example, see the Export Docker image step of the first workflow in the list:

- name: Export Docker image
run: |-
 set -o nounset
 set -o errexit
 set -o pipefail

 DOCKER_IMAGE_TAG="$(docker images "${{ inputs.docker_image_local_name }}" --format '{{.Tag}}' |
 tail -1)"
 TARGET_IMAGE_TAG="${GITHUB_REPOSITORY,,}:ci"
 docker tag "${{ inputs.docker_image_local_name }}:${DOCKER_IMAGE_TAG}" "${TARGET_IMAGE_TAG}"
 docker save -o /tmp/docker-image "${TARGET_IMAGE_TAG}"

Note that variable DOCKER_IMAGE_TAG is created from "${{ inputs.docker_image_local_name }}". If an

attacker can control the input docker_image_local_name, they could inject commands with strings like `whoami`

or ; echo command ;.

This is not reported as an issue because the injections are only present in actions triggered by a workflow_call and

so only other actions can trigger them. Additionally, of course, developers might change the workflow or the code to be

malicious, and there is only a remote use case where user without permissions to write on the repository but can trigger

the workflows manually. Even in this case there is nothing to gain from this attack.

Nonetheless, this issue can be mitigated with an intermediate environment variable from a step env to store the data.

We report a generic example that you can find in the GitHub documentation:

- name: Check PR title
env:
 TITLE: ${{ github.event.pull_request.title }}
run: |
 if [["$TITLE" =~ ^octocat]]; then
 echo "PR title starts with 'octocat'"
 exit 0

20 Radically Open Security B.V.

https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions?learn=getting_started#using-an-intermediate-environment-variable

Public

 else
 echo "PR title did not start with 'octocat'"
 exit 1
 fi

5.2 NF-009 — JWT verification doesn't require Issued At claim

The JWT token verifier makes it optional to include the time at which the token was generated. An attacker with a token

that doesn't hold such a claim can use it indefinitely.

Non finding because idp doesn't need to set iat.

5.3 NF-012 — Protocol considerations

Improvements

• It might be good if people can submit invalid bundles somewhere to detect attack trends.

• To detect a compromised organization, TLD or IANA, an application could, on boot, store the DNSSEC keys for

the active organization and most of the TLDs. If they are changed before their expiry time, the user can be shown

an alert about a potential compromise.

• Consider using an allowlist instead of a denylist for member names. ROS was informed that this is already being

included in the VeraID standard draft.

Threats

• A large part of the security design relies on how the DNS parsers parse the DNSSEC chain. A bug in the parser

might allow an attacker to break security assumptions. For example, a golden bug would be a record that is seen

holding the public key that is not included in the rrset.

• Key management is an obvious challenge. If the private keys from the organization or the member are

compromised it breaks their security abilities.

• There is also the threat of an attacker sending an invalid member bundle to a member. If they import it and

override their bundle, they can’t sign anything until they get online again (and download a new bundle). There is a

verify method on the bundle model, but it was not tested because it wasn’t included in the demo application.

5.4 NF-013 — Signature bundle verification fuzzing

Fuzzing is an automated software testing technique that feeds unexpected or random inputs to a program to discover

security vulnerabilities. During the analysis we wrote a quick and simple fuzzer to see if it was possible to alter a

Non-Findings 21

valid signature bundle in a way that it would be valid, but with different essential data (e.g. the name of the signer). A

secondary goal was to find which fields in the signature bundle could be changed without invalidating it, which may help

to find additional issues.

We report here the full bash script we wrote to fuzz signature bundle verification. It uses the verify.js script from the

VeraId demo using the veraid-js library. We used the code from the same demo to generate the organization and

member certificates, along with the member bundle and signature bundle. The only other requirement is Radamsa, a test

case generator for robustness testing, a.k.a. a fuzzer.

#!/bin/bash
prefix="${1}"
if ["${prefix}" == ""]; then
 prefix="${RANDOM}"
fi

while true
do
 out="./fuzz/out${prefix}_${RANDOM}.fuzz"
 # If grep find the `successful` string in the output then the signature bundle variation was
 still valid
 cat signature.bundle | radamsa | tee "${out}" | ./verify.js "1.3.6.1.4.1.58708.1.1" | grep -q
 successful
 if [$? -eq 0]; then
 echo win
 mv "${out}" "${out}.win"
 else
 rm ${out}
 fi
done

Results
Around 24 hours of running 7 instances of this script produced 840 variations of a valid signature bundle that were valid

but different; none of these contained alterations of the signed data or the signer name, or had meaningful alterations to

the DNSSEC chain.

Most of the changes happened in DNSSEC records that were not taken into account, like SOA, domain names of DNS

queries that did not have answers, and unused padding.

Even if the results did not find a vulnerability in the signature bundle verification, they highlighted that many of the

fields in the signature bundle are not essential and can be altered without changing the validity of the file. This could

be important for further fuzzing since it might be necessary to create more specific checks when deciding whether a

variation is meaningful or not for the use case. On the other hand, since it is fairly easy to create a valid variation from an

additional file it could be an indication that fuzzing could provide hints on which parts of the signature bundle are actually

used or not, perhaps helping further security research.

22 Radically Open Security B.V.

https://veraid.net/demo/
https://gitlab.com/akihe/radamsa

Public

6 Future Work

• DNSSEC Parsing

Perform dedicated testing on the DNSSEC chain parsing and validation code. The DNSSEC chain parsing is a

single point of failure for the system; if an attacker can manipulate it, they might be able to forge arbitrary signature

bundles.

• Signature bundle fuzzing

Continue the fuzzing work with a more sophisticated process, perhaps one that supports code coverage, and with

an automated means of comparing signature bundle variations. Also consider that time is an important factor in

fuzzing, and it might take months to find a meaningful variation.

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, perform a repeat test to

ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

Future Work 23

7 Conclusion

We discovered 1 Elevated, 4 Low and 1 N/A-severity issues during this penetration test.

The review followed several approaches to find potential issues in the code. We started from the available VeraId demo

to generate valid signature bundles and certificates, and deployed VeraId on our own domains. After understanding

and researching the environment, we proceeded with a manual review of the code, writing custom tests to check for

corner cases and see if our attacks were feasible. For example, we used the testing unit of veraid-js to check

whether it would be possible for a member to forge new certificates with their own, which proved to not be possible

unless the organization allows it. Lastly, we tried to perform fuzz testing on the signature bundle verification process to

try to find possible valid variations of a genuine signature bundle.

This security audit identified a few vulnerabilities and risky implementation patterns that could impact the overall security

posture of the system. The most important issue is the use of MongoDB IDs that could be predictable, depending on the

deployment, as Awala public key import tokens. The remaining issues relate to input validation; they do not pose a threat

to the system as a whole, but only in certain specific cases.

Nonetheless, the overall implementation and the protocol itself appear sound and robust. The design demonstrates

a thoughtful approach to security, with many aspects of the threat model explicitly considered and reflected in the

implementation. Furthermore, the presence of defensive coding patterns and checks across the code base suggests

a clear effort to anticipate and mitigate potential vulnerabilities. While no system is entirely immune to risk, the current

implementation shows a strong foundation that can be built upon with targeted improvements.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process that must be continuously evaluated and improved – this

penetration test is just a one-time snapshot. Regular audits and ongoing improvements are essential in order to maintain

control of your corporate information security. We hope that this pentest report (and the detailed explanations of our

findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

24 Radically Open Security B.V.

https://veraid.net/demo/

Public

Appendix 1 Testing Team

Sipke Mellema Sipke is an experienced pentester with nine years of experience in the field. His
specialty is crystal-box web security and providing long-term advice on security
improvements. Over the years he has branched out to the cloud, IoT, ICS, network
security, and security management.

Andrea Jegher Andrea is a security engineer with experience in offensive security and secure
development. He started his career focusing on Web Application as a developer and as
a penetration tester. Later he studied other fields of security such as cloud, networks
and desktop applications.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing Team 25

